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Statement of objectives 

The principal objective of this project is to develop a more fundamental understanding of the effect of 
the stress state within crystals and t he initiation of fatigue-induced damage in metallic materials . The 
research consists of a coordinated suite of experiments and simulations to explore how the stress within 
crystals evolves over the course of a metal's fatigue life. Specifically, our goals are to: 

• measure lattice strains by synchrotron x-ray diffraction under dynamic loading conditions using an 
in situ loading/data acquisition system; 

• simulate the experiments using highly-resolved virtual polycrystals and a crystal-based elastoplastic 
finite element model; 

• collect microstructural data for the grain morphology, crystallographic texture, and subgrain fea
tures such as lattice misorientation and use t he data to formulate a digital representation of the 
material state; and 

• develop from the collective results of the experiments, simulations, and characterization a compre
hensive understanding of the evolution of crystal stress during cyclic loading and its bearing on the 
formation of fatigue defects. 

The results obtained in this research complement the extensive body of literature on the evolution of 
microstructure during fatigue and provide an essential, but previously missing, contribution: knowledge 
of the local stress that drives the formation of defects . 

Highlights 

We have developed an approach to investigate crystals stresses during cyclic load by coordinating exper
iments and simulations at t he size scale where fatigue induced defects initiate. Our efforts provided new 
understanding of the stress evolution during cyclic loading through a complementary process between the 
experimental measurement of lattice strain and the simulation results. The comparison of the experimen
tal and the simulated lattice data culminated in a novel picture of how the stress evolves at the crystal 
scale. 

1. Using the crystal-based elastoplastic finite element model, we found that for different levels of the 
single crystal elastic anisotropy, different sets of crystal { hkl}s within a FCC polycrystalline sample 
evolve differently through the elastic-plastic transition under monotonic tension loading (Figure 1) . 
We show that different sets of crystal { hkl}s begin yielding at different macroscopic stress levels. It 
is the strength-to-stiffness ratio of these { hkl}s that determines the crystal lattice strain and yield 
behavior for different values of the single crystal elastic anisotropic ratio. 

2. T he single crystal elastic anisotropy also causes causes the hysteresis loops under fully-reversed 
cyclic loading to contract preferentially, as shown in the simulation results in Figure 2. It was found 
that plasticity occurs more readily with continued cycling for certain crystal { hkl}s than others due 
to the influence of the strength-to-stiffness ratio as well. 

3. For a given average grain size and crystallographic texture, a method for measuring a representative 
volume element (RVE) in orientation space was developed and applied. For statistical relevance, each 
diffraction measurement must comprise the response of enough crystals to produce a lattice strain 
value that is independent of the sample region interrogated and the exact subset of participating 
crystals for the particular orientation. An example of diffracted image plate data and the required 
RVE in orientation space is shown in F igure 3. 



0 .018r;=~:::::::=:::::::r::::;-~-~-~-~~ 
~{100} II LD 

0.016 ~{111} II LD 
0.014 ~{110} II LD 

·= 0.012 
~{311} II LD .. 

~ 0.010 ., 
~ 0.008 

j 0.006 

0.004 

0.002 

0 100 200 300 400 500 600 700 
Macroscopic stress (MPa) 

(a) Elastically isotropic FCC single crystals 

0 .018rr===:!===:::=!::::;-~-~-~--~ 
~{100} II LD 

0.016 ~{111} II LD 

0.014 ~{110} II LD 

.= 0.012 
E 
u; 0.010 ., 
~ 0.008 .. 
..J 0.006 

0.004 

~{311} II LD 

0 100 200 300 400 500 600 700 
Macroscopic stress (MPa) 

(b) High elastic anisotropy FCC single crystals 

Figure 1: The evolution of lattice strains corresponding to different {hkl} lattice planes aligned with the 
loading direction (LD) fibers for low and high single crystal elastic anisotropy. 

600 

... 400 
II. 

~ ., 200 ., 
~ ., 

0 u 
"Q. 
0 
u e -200 
u .. 

::E -400 

-6o~L---~o----~1-----2~--~3~--~4 

Macroscopic strain (%) 

(a) Elastically isotropic FCC single crystals 

600 

... 400 
II. 

~ ., 200 ., 
~ 
u; 

0 u 
"Q. 
0 
u e -200 
u .. 

::E -400 

-6o~L---~o----~1 -----2~--~3----~4 

Macroscopic strain (%) 

(b) High elastic anisotropy FCC single crystals 

Figure 2: Macroscopic stress-strain curve of the virtual polycrystal under uniaxial fully-reversed cyclic 
loading for 20 cycles 

4. The lattice strain data for scattering vectors near the loading direction show a decreasing trend with 
increasing cycles. The evolution of the lattice strain due to cyclic loading is shown in Figure 4. 

5. We have developed an expanded methodology to investigate the evolution of the crystal-level re
sponse in polycrystalline metals during cyclic loading. This methodology was developed on AA 7075-
T6 sheet. The methodology involves comparing the evolving experimental lattice strain directly to 
the simulation by utilizing the exact fiber geometry found in t he experiments. Using this method, we 
show that the crystal-level mechanical properties such as single crystal elastic anisotropy and yield 
strength are important in quantifying the stress distribution of polycrystals under cyclic loading. 

Completed and expected publications 

Results are documented through publications in archival journals. In addition to the paper already 
published, we plan to publish papers devoted to the highlights listed in t he Highlights section above. 

1. M.P. Miller , J.-S. Park, P. R. Dawson, and T.-S. Han. "Measuring and modeling distributions of 
stress state in deforming polycrystals" . Acta Materialia, 56:3927-3939, 2008. 



(a) (b) 

Figure 3: (a): A typical diffraction pattern for the AA 7075-T6 where each ring corresponds to a particular 
family of crystallographic planes ( { hkl}s) and a 15° azimuthal bin is overlaid. (b): The RVE for the 
AA 7075-T6 is shown, using the Rodrigues parameterization for orientation space, for the { 200} for the 
azimuthal bin indicated in (a). For this particular material the crystals whose orientations fall within the 
highlighted volume contribute to a single measurement of lattice strain. 
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Figure 4: The lattice strain values for all { hkl}s are decreasing with increasing cycles for the bin labeled 
in Figure 3(a). The decrease is largest between 100 and 500 cycles. 

2. Su Leen Wong, Paul Dawson. "Influence of elastic anisotropy on the micromechanical behavior of 
FCC polycrystalline aggregates under uniaxial tensile loading." In preparation. 

3. Su Leen Wong, Paul Dawson. "On the evolution of the stress distribution of FCC polycrystals 
during cyclic loading." In preparation. 

4. Jay Schuren, Matthew Miller. "Experimental determination of a representative volume element in 
orientation space for lattice strain measured using x-ray diffraction ." In preparation. 

5. Jay Schuren, Matthew Miller. "Investigating the evolution of experimentally measured lattice strain 
in AA7075-T6 due to cyclic loading." In preparation. 



6. J ay Schuren, Su Leen Wong, Matthew Miller, Paul Dawson. "Combining simulation and experi
ments to measure the evolution of the stress at the crystal scale during cyclic loading." In prepara
tion. 

Remaining work 

The current project constitutes the PhD research of two graduate students: Su Leen Wong and Jay 
Schuren. The research will be expanded upon and will culminate in their dissertations. Their goal is to 
improve the understanding between the evolution of crystal stresses and the micromechanics that lead to 
fatigue defect initiation. 

We are in the process of reducing the lattice strain data from our most recent experiment conducted in 
March 2009. The results for many scattering vectors will provide a more complete picture on the source of 
the evolution of the lattice strain data: are the crystal stress tensors rotating or changing in magnitude? 

We will compare experiment and simulation lattice strains under zero-tension cyclic loading using the 
methodology described in the previous section to develop an understanding of the evolving stress state 
with respect to the vertices of the yield surface. The measured lattice strain will be compared directly 
to the simulation by utilizing the same fiber geometry as in the experiments. We also plan to use the 
concept of the strength-to-stiffness ratio, to examine its influence on the evolution of lattice strains and 
cyclic hardening during zero-tension loading. 

Details of accomplishments 

1. Elastic anisotropy parametric study 

A suite of simulations was conducted using a crystal-based finite element model for uniaxial tensile loading 
and fully-reversed cyclic loading. The single crystal elastic anisotropic ratio was varied systematically to 
examine its influence on the crystal-level behavior of the virtual polycrystal. 

A virtual polycrystal in the shape of a cube, as shown in Figure 12, is instantiated with 1098 rhombic 
dodecahedra grains although there are additional partial grains that make up the surfaces of the cube. A 
rhombic dodecahedral grain has 12 faces and consists of 48 10-node tetrahedra finite elements each assigned 
the same initial lattice orientation. The initial orientations of all the grain are randomly assigned from a 
uniform orientation distribution function (ODF). The orientations of the finite elements that constitute a 
grain are allowed to evolve independently as the deformation proceeds. We consider FCC crystals which 
deform by crystallographic slip on {111} slip planes in (110) slip directions. This finite element mesh that 
was generated consists of 81000 finite elements and is used in all the simulations in this study. 
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Figure 5: (a): Virtual polycrystal in the shape of a cube including partial surface grains. (b): Interior of 
virtual polycrystal showing complete rhombic dodecahedra grains 



The elastic anisotropy of a single crystal arises from the orientation dependence of the elastic response 
of the crystal lattice. The level of elastic anisotropy of a single crystal with cubic symmetry is quantified 
by the ratio of the elastic stiffness in the (111) crystal direction to the elastic stiffness in the (100) crystal 
direction, and it is defined as the elastic anisotropic ratio, rE = E(ln)/E(wo)· In cubic crystals, the (111) 
direction is typically the stiffest direction and the (100) direction is the most compliant direction. In 
this study, we are interested in the crystal level response when the elastic anisotropy ratio (rE) is varied , 
while keeping the average macroscopic elastic response of the virtual polycrystal constant. A range of rES 
was chosen to represent single crystal behavior ranging from an isotropic single crystal (rE = 1.0) to a 
highly anisotropic single crystal (rE = 3.0). The macroscopic stress-strain response is shown in Figure 6 
for TE = 1.0 and rE = 3.0. The single crystal elastic moduli were varied systematically while keeping 
the macroscopic Young's modulus (slope of the elastic portion of the macroscopic stress-strain curve) 
constant for all values of r E under consideration. The Young's modulus of the macroscopic stress-strain 
curves shown in Figure 6 is the same as the Young's modulus for pure aluminum. 
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Figure 6: Macroscopic true stress-strain curve under uniaxial tensile loading for rE = 1.0 andrE = 3.0. 

The set of all crystals with the { hkl} lattice plane normal aligned with the loading direction (LD) is 
referred to as the { hkl} II LD crystallographic fiber. The average lattice strain and plastic strain rate 
magnitude under uniaxial tensile loading are examined for different { hkl} II LD fibers. In this suite 
of simulations, the same finite element mesh is used and all slip system hardening parameters are kept 
constant. The evolution of the lattice strains through the elastic-plastic transition for two different values 
of the single crystal anisotropic ratio, rE = 1.0 andrE = 3.0 are shown in Figure 7. The plastic strain 
rate magnitudes corresponding to different { hkl} II LD fibers are shown in Figure 8. A large nonlinear 
increase in the magnitude of the plastic strain rate indicates that on average, crystals belonging to the 
{ hkl} II LD fiber have yielded. 

The lattice strains corresponding to the elastically isotropic case (rE = 1.0) are shown in Figure 7(a) 
and it shows that the lattice strains are the same for all fibers in the elastic regime, a result that is 
consistent with an elastically isotropic material. Once yielding begins and plastic deformation occurs, 
the latt ice strains diverge in the plastic regime. The { 111} lattice strains rise above the other { hkl} 
lattice strains in the post-yield regime. This is accompanied by the { hkl} II LD fiber yielding at a higher 
macroscopic stress compared to the other fibers as seen in Figure 8(a). Although all the crystals are 
elastically isotropic, Figure 8(a) demonstrates that there is plastic or yield strength anisotropy as well 
because different crystallographic fibers yield at different macroscopic stress levels. 

When the elastic anisotropic ratio rE is increased to rE = 3.0, the behavior of the crystals are 
influenced by a combination of the elastic and plastic anisotropy and this results in different behaviors in 
both t he elastic and plastic regime. The lattice strains corresponding to the high elastic anisotropy case 



(rE = 3.0) are shown in Figure 7(b). It can be seen that the single crystal elastic anisotropy results in 
a spread between the lattice strains for different {hkl}s in the elastic regime. In the post-yield regime, 
the magnitude of the {111} lattice strains decreases while the {100} lattice strains rise above the others 
for TE = 3.0, as seen in Figure 8(b). This observation is accompanied by the {100} fiber yielding at a 
higher macroscopic stress level compared to the {111} fiber, which is the reverse of what is observed in 
the elastically isotropic case (rE = 1.0) . 
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Figure 7: The evolution of the lattice strains through the elastic-plastic transition corresponding to 
different {hkl} II LD fibers forTE = 1.0 and TE = 3.0. Uniaxial tensile loading is applied to the virtual 
polycrystal specimen. 
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Figure 8: The magnitude of the plastic strain rate as a function of the macroscopic stress corresponding 
to different {hkl} II LD fibers forTE= 1.0 and TE = 3.0. Uniaxial tensile loading is applied to the virtual 
polycrystal specimen. 

The evolution of orientation-dependent lattice strain and plastic strain rate magnitude seen in Fig
ures 7-8 indicate that these behaviors are influenced by the elastic and plastic properties of a crystal. The 
orientat ion dependence of the elastic and plastic behavior of a single crystal can be quantified using the 
strength-to-stiffness ratio (rs) , which is the ratio of the plastic strength to the elastic stiffness of a single 



crystal in a particular (hkl) direction. The strength-to-stiffness ratio for a given (hkl) crystal direction is 
defined as: 

s m (hkl) 
r(hkl) = E (hkl) 

(1) 

where m (hkl) is the orientation-dependent Schmid factor and E (hkl) is the directional Young's modulus 
for a cubic single crystal under uniaxial tension in the direction (hkl ). The Schmid factor m (hkl) is the 
maximum resolved shear stress on all the slip systems of a crystal under a uniaxial stress state applied in 
a particular (hkl) direction. 
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Figure 9: FCC single crystal strength-to-stiffness ratio , rfhkl) over the fundamental orientation triangle 

Since both the elastic stiffness and the Schmid factor vary with orientation, the strength-to-stiffness 
ratio r fhkl) also varies with orientation. Figure 9 depicts the plots of rfhkl) over the fundamental orientation 
triangle corresponding to two levels of the elastic anisotropic ratio r E . The elastically isotropic case 
(re = 1.0) leads to the highest strength-to-stiffness for the (111) crystal direction and that influences that 
{111} fiber to yield at a higher macroscopic stress level as seen in Figure 8(a). The high elastic anisotropy 
case (re = 3.0) however, has the highest strength-to-stiffness for the (100) crystal direction instead which 
corresponds to the {100} fiber yielding at a relatively higher macroscopic stress level compared to the other 
{hkl}s , as seen in Figure 8(b). Therefore , the strength-to-stifi"ness ratio determines the order in which the 
crystals begin yielding. The lattice strains also begin deviating from a linear elastic response, shown in 
Figure 7 once yielding begins because the yield behavior is determined by the strength-to-stiffness rfhkl ) . 

We also examine the influence of the single crystal elastic anisotropy r E on the macroscopic and 
crystal-level behavior of the virtual polycrystal under uniaxial fully-reversed cyclic loading for 20 complete 
cycles. The same finite element mesh and slip hardening parameters used in the uniaxial tensile loading 
simulations are used in the fully-reversed cyclic loading simulations as well . It is observed that the single 
crystal elastic anisotropy influences the contraction of the hysteresis loops with increasing cycles, shown 
in Figure 10. The macroscopic stress-strain curve for the high elastic anisotropy case (re = 3.0) collapses 
more rapidly compared to the elastically isotropic case (re = 1.0). The magnitude of the plastic strain 
rate vector at the maximum macroscopic stress level on each cycle is also shown in Figure 11 for different 
fibers. It is observed that plasticity occurs more readily for certain {hkl}s than others. For there= 1.0 
case, the {100} II LD fiber continues to be active in terms of plasticity throughout the deformation while 
the plastic strain rate of the {111} II LD fiber decreases relatively quickly after 20 cycles. For there= 3.0 
case however, the {100} II LD fiber decreases at a much faster rate compared to the other sets of crystals 
and after 20 cycles, the { 111} II LD fiber instead are experiencing more plastic straining compared to 



the {100} II LD fiber. These trends show that the strength-to-stiffness ratio plays an important role in 
influencing the plastic response of the polycrystal under fully-reversed cyclic loading. 
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Figure 10: Macroscopic stress-strain curve of the virtual polycrystal under uniaxial fully-reversed cyclic 
loading for 20 cycles 
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Figure 11: Magnitude of the plastic strain rate vector at the maximum macroscopic stress on each cycle 
for two levels of single crystal elastic anisotropy 

2. Quantifying experimental lattice strains 

Cycle-by-cycle variation in the lattice strain is linked to the evolution of the stress tensor at the crystal 
scale: To quantify the stress that drives the initiation of fatigue induced defects we must first understand 
both t he amount of variation and the statistical significance of the results. 

The measurement-by-measurement resolution of the lattice strain is governed by the determination of 
diffracted peak positions and the application of a geometric model to correct for the non-orthogonality of 
the detector with respect to the incoming x-ray. The metric for gaging the quality of the corrected data 
is based on the peak positions of a calibrant material, cerium dioxide in this case, which is added to one 
side of the specimen. This calibrant has a known lattice parameter and the diffraction pattern should 



appear as perfect concentric circles. Through quantifying any deviation from circular we can obtain a 
value for the resolution of the experiment. 

Figure 12 outlines the process of determining the resolution in terms of 2() , where () is the Bragg 
angle. The first panel depicts an example of image plate data with two diffracted calibrant rings. By 
dividing the rings into equal angular bins and determining the peak positions, we can generate plots of 
the angular position versus the particular TJ bin. The angular difference between the experimental peak 
position and the theoretical peak position generated using the lattice parameter establishes the resolution 
of the lattice strain. The conversion of /12() to a strain value for a given { hkl} is achieved using Bragg's 
law, >. = 2dhkl sin ()hkl, to find the limiting strain resolution ( 6.d/ d) . 

The definition of a representative volume element (RVE) for diffraction measurements is different from 
the classical definition because only a subset of crystals within the irradiated volume of the sample diffract. 
These diffracting crystals share a common orientation to within a rotation about the plane normal of the 
crystal. The relationship is defined as: 

Rc=±q (2) 

where R is the crystal orientation, c is the diffracting family of lattice planes, and q is the bisector of 
the incoming and diffracted x-ray as shown in Figure 13. All orientations (R) that satisfy Equation 2 fall 
along a fiber. Employing a Rodrigues parameterization of orientation space the fiber is a line. 

A RVE for lattice strain measurements is defined to have enough crystals diffracting to produce a 
statistically significant response. The lattice strain measurement must be orientation dependent and 
insensitive to the exact subset of crystals interrogated. For a given grain size and texture the geometry 
of the fiber can be adjusted to dictate the approximate number of crystals participating in the diffraction 
experiment. Experimentally this is controlled by two parameters: the azimuthal bin size ( TJ range) and a 
sample oscillation about a prescribed value (rocking). An azimuthal bin of 15° is overlaid on image plate 
data in Figure 14(a). Rocking is the slight reorientation of the sample during the diffraction measurement 
achieved by a 2° rotation about an axis through the sample. The combination of the diffracted signal 
from these two angular ranges is a fiber with a specific geometry in orientation space. For the {200} 
peak the corresponding fiber is shown in Figure 14(b ). The length is along the direction of the fiber , the 
width is defined by the azimuthal bin size, and the thickness comes from the 2° rocking. Understanding 
the connection between the fiber dimensions and the number or participating crystals is essential for 
measuring statistically significant lattice strain values in the AA 7075-T6. When the fiber dimensions are 
less than the needed size for a RVE, neighborhood effects would govern the results. 

T he determination of the RVE is also linked to the crystallographic multiplicity. Multiplicity is a 
measure of the likelihood that a given { hkl} will diffract with respect to another. For cubic materials the 
lowest multiplicity crystallographic family corresponds to the cube face with six possible permutations 
that would appear identical to diffraction techniques. For a weak texture, as is the case for the AA 7075-
T6, t he number of crystals participating in a diffraction measurement of each { hkl} will scale with the 
multiplicity(i.e. M3u = 24 and M2oo = 6). Therefore the limiting {hkl} in the AA7075-T6 is the {200} 
which establishes the volume of the fiber necessary to measure the most likely response of crystals lying 
along a particular fiber in orientation space (statistically significant). 

To determine whether a RVE contains enough crystals we utilize specimen symmetry with resepect to 
the loading axis. This symmetry is visible in the {200} lattice strain data shown in Figure 15(a). Initially 
at TJ = 0° the scattering vector is as close to the loading direction as possible producing the maximum 
lattice strain value. As the azimuthal angle increases the lattice strain will decrease to a minimum at 
TJ = 90° (near the transverse direction). Due to specimen symmetry, the lattice strain measured at 
TJ = 0° must be statistically similar to the measurement at TJ = 180°. Figure 15(b) depicts the fibers 
corresponding to TJ = 0° and TJ = 180°, as shown by the blue and red fibers respectively. The difference 
in the two fibers indicates that the participating crystals are two distinct subsets, but the mechanical 
response must be similar. 
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F igure 12: T he method for determining the lattice strain resolution of image plate data. A peak located 
at 20 = 7° with b.20 = 0.001° leads to a strain resolution of approximately 1.4 x 10-4 . 

Application of these methods for the bin labeled in Figure 14(a) leads to the lattice strain results in 
Figure 16. Figure 16(a) shows lattice strain results versus the macroscopic stress for the first cycle. The 
material deforms elastically from 0 to rv400 MPa as shown by the near constant slope for each { hkl}. The 
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Figure 13: Two-dimensional schematic showing the relationship between the specimen, detector, scatter
ing vector ( qhkl) , intersecting a sphere corresponding to the strain pole figure surface, and the incident 
and diffracted beams. The value ()hkl is the Bragg angle for a particular { hkl}. 
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Figure 14: (a): A typical diffraction pattern for the AA7075-T6 with the cerium dioxide calibrant where 
each ring corresponds to a particular family of crystallographic planes ( { hkl}s) and a 15° azimuthal bin 
is overlaid. (b): The 200 fiber bundle for the azimuthal bin indicated in (a) shown in orientation space. 
The crystals whose orientations fall within the highlighted volume contribute to a single measurement of 
lattice strain. 

relative order of the {hkl}s in the elastic regime arises from the single crystal anisotropy and the angle 
of co-axiality of the scattering vector and the loading direction. The decrease in the angle of co-axiality 
between the scattering vector and the loading direction governs the decrease between the { 111} and the 
{222} lattice strains. 

Figure 16(b) shows the lattice strain vs. the log cycle for the bin labeled in Figure 14(a). Diffraction 
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Figure 15: (a): The {200} lattice strain values as a function of the azimuthal angle. Specimen symmetry 
can be seen by comparing the maximum values at 'TJ = 0° and 180°. (b) : The blue and red fibers in 
orientat ion space correspond to the {200} fibers for 15° azimuthal bins centered about 'TJ = 0° and 180°. 

measurements were made after cycles 1, 2, 5 10, 25 , 100, and 500. The specimen failed after approximately 
800 cycles. The decrease in the lattice strain values between cycle 100 and cycle 500 is much larger than 
the experimental resolution. This decrease in the lattice strain for all { hkl}s is a response to the evolution 
of the stress with increasing cycle. Currently we have only investigated the cyclic data in this particular 
azimuthal bin since the experiment was conducted during our Spring '09 beam time at the Cornell High 
Energy Synchrotron Source. This measurable lattice strain evolution is a strong indicator that we are 
capturing the effects of the changing micromechanical state due to cyclic loading. The results for other 
scattering vectors will provide a more complete picture of what is happening at the crystal scale; enabling 
us to invest igate hypotheses like: is the stress slightly rotating toward a vertex of the yield surface with 
each cycle? 
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Figure 16: a: Lattice strain versus the macroscopic stress for the azimuthal bin shown in Figure 14(a). 
b: The lattice strain values for all { hkl}s are decreasing with increasing cycles. The decrease is largest 
between 100 and 500 cycles. 



3. Expanded methodology for comparing experiments and simulations 

An expanded methodology has been developed to enable a direct comparison between x-ray diffraction 
measurements and crystal-based finite element simulations during cyclic loading. The AA7075-T6 alu
minum alloy has been used to develop this methodology but this methodology can be used to investigate 
the crystal-level response of other types of polycrystalline metals as well. The steps of this procedure are 
as follows: 

1. Instantiate the virtual specimen 
A virtual polycrystal specimen is created with rhombic dodecahedral grains discretized with 48 
elements per grain. The ODF of the virtual specimen is identical to the physical specimen. 

2. Determine the strain hardening parameters 
Using an crystal-based elastoplastic finite element model, the appropriate strain hardening param
eters for the virtual specimen are determined by matching the macroscopic stress-strain curve from 
the experiment with the simulation results. 

3. Determine the single crystal elastic moduli on first cycle 
Although the macroscopic stress-strain response can be matched between the experiment and simu
lat ion, there also needs to be agreement between the experiment and simulation at the crystal level. 
T he single crystal elastic moduli are determined by comparing computed lattice strains with the 
measured lattice strains on the first cycle using the same scattering vectors as in the experiment. 
T he single crystal elastic anisotropy is varied until a reasonably accurate match is achieved. 

4. Compare lattice strains on successive cycles 
Once the single crystal elastic moduli have been determined, we can quantify the evolution of the 
stress/strain distribution of the crystals on successive cycles. 


